Enhancement of Light Emission from Silicon by Utilizing Photonic Nanostructures
نویسندگان
چکیده
Efficient silicon-based light sources are expected to be key devices for applications such as optical interconnection. Huge number of researches has been conducted for realizing silicon-based light sources. Most of them utilized silicon-related materials such as silicon nanostructures or germanium, not crystalline silicon, which has been considered as a poor light emitter because of its indirect electronic bandgap. Light emission properties of materials can be tailored not only by modifying the material properties directly, but also by controlling the electromagnetic environment surrounding the material. Photonic nanostructures are a powerful tool for creating the engineered environment. In this paper, we briefly review the mechanisms for improving the light emission properties of materials by photonic nanostructures and present our recent experimental results showing the enhancement of light emission from silicon by introducing photonic crystal structures. key words: photonic nanostructures, photonic crystals, nanocavity, Purell effect, silicon, light emission, LED
منابع مشابه
Silicon photonic crystal thermal emitter at near-infrared wavelengths
Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silico...
متن کاملSolar cell efficiency enhancement using a hemisphere texture containing metal nanostructures
One major problem of the conventional solar cells is low conversion efficiency. In this work, we have proposed a new design including hemisphere texturing on top and metallic plasmonic nanostructure under the silicon layer to enhance the optical absorption inside the photosensitive layer. The finite-difference time-domain (FDTD) method has been used to investigate the interaction of light wi...
متن کاملInvestigating Molecular Spontaneous Emission Rate Enhancement Close to Elliptical Nanoparticles by Boundary Integral Method
Utilizing boundary integral method (BIM), we investigate molecularspontaneous emission rate enhancement in the vicinity of plasmonic nanoparticles ofelliptical cross section. These types of nanoparticles can considerably enhance themolecule decay rate. The spontaneous emission rate can be modified by altering theaspect ratio of the elliptical nanoparticle, the background refractive index andnan...
متن کاملGuided mode caused by silicon nanopillar array for light emission enhancement in color-converting LED.
Plasmonic metallic nanostructures have been demonstrated an effective way to enhance the light emission efficiency in LEDs. Here, we propose a design of white LEDs that combining dielectric silicon nanopillar array in the color-converting layer. By investigating theoretically the guided mode caused by the nanopillar array-waveguide system, we demonstrate that the silicon nanopillar arrays enabl...
متن کاملSpectrally enhanced light emission from aperiodic photonic structures
Light-emitting silicon-rich, SiNx /SiO2 Thue-Morse sT-Md multilayer structures have been fabricated in order to investigate the generation and transmission of light in strongly aperiodic deterministic dielectrics. Photoluminescence and optical transmission data experimentally demonstrate the presence of emission enhancement effects occurring at wavelengths corresponding to multiple T-M resonanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 95-C شماره
صفحات -
تاریخ انتشار 2012